Abstract
On-chip Bragg gratings with high reflectivities have been found to have widespread applications in filters, resonators, and semiconductor lasers. However, achieving strong Bragg reflections with flat response across a broad bandwidth on the popular 220 nm silicon-on-insulator (SOI) platform still remains a challenge. In this paper, such a high performance device is proposed and fabricated, which is based on a slot waveguide with gratings etched on the inner sidewalls of the slot. By manipulating the local field in the slot region using a chirped and tapered grating-based mode transition, the device achieves a flat response with ultra-high reflection and low transmission for the TE mode across a broad operating bandwidth. Leveraging the ultra-high birefringence of the SOI waveguide, the device functions both as a TE slot waveguide reflector and a TM pass polarizer. Simulation results demonstrate that the device exhibits an ultra-high rejection of more than 50 dB and a reflectivity exceeding 0.99 for the TE mode across a 91 nm wavelength range, while maintaining a high transmittance of larger than 0.98 for the TM mode. Experimental results validate that the device performance is consistent with the simulation results. A fabricated device based on such a gratings exhibits a low insertion loss (<0.8 dB) and high polarization extinction ratio (>30 dB) over 100 nm bandwidth (1484 nm–1584 nm), demonstrating that the performance of the present design is competitive with that of the state-of-the-art SOI Bragg gratings.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hebei Province
Advanced Talents Program of Hebei University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献