Abstract
All-optical canonical logic units-based programmable logic array (CLUs-PLA) is an important combinational logic device owing to its flexibility and user-defined feature. However, the limited number of three-input CLUs generated in a single nonlinear device hinders their practical application. In this study, we overcome this limitation and experimentally demonstrate the simultaneous generation of a full set of three-input CLUs in only one nonlinear device. By performing bidirectional four-wave mixing (FWM) and wavelength spacing optimization, the all-optical three-input PLA with a full set of CLUs enables arbitrary functions. We experimentally demonstrate the implementation of a series of combinational logic functions including, user-defined logic functions, full adder, and full subtractor, exhibiting error-free performances for all logic operations at 40 Gb/s. The scheme can reduce the number of nonlinear devices in CLUs-PLA, which simplifies the computing system and reduces power consumption. Therefore, the scheme has great potential for future high-speed optical computing systems.
Funder
National Key Research and Development Program of China
National Science Foundation for Young Scientists of China
Natural Science Foundation of Guangdong Province
Key Technologies Research and Development Program of Shenzhen
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献