Enhancing the optical path inside a capillary without sacrificing light intensity: application to a compact and highly sensitive photometer

Author:

Li Xuejing,Huang Hui,Cai Weicheng,Zhao Jian,Liu Pengbo,Sun Changkai,Jin Zengbin1,Wu Yajun2,Liu Mingchang2

Affiliation:

1. China National Heavy Duty Truck Group Co. Ltd.

2. Chinese Academy of Inspection and Quarantine

Abstract

In order to increase the optical path and related sensitivity of photometers, multiple axial-reflection of parallel light-beam inside a capillary cavity is one of the most effective ways. However, there is a non-optimum trade-off between optical path and light intensity, e.g., smaller aperture on cavity mirror can increase multiple axial-reflection times (i.e., longer optical path) due to the lower cavity-loss, but it would also reduce coupling efficiency, light intensity, and related signal-to-noise ratio. Herein, an optical beam shaper, which is composed of two optical lenses with an apertured mirror, was proposed to focus the light beam (i.e., increasing coupling efficiency) without deteriorating beam parallelism and related multiple axial-reflection. Thus, by combining the optical beam shaper with a capillary cavity, large optical path enhancement (10-fold of capillary length) and high coupling efficiency (>65%) can be realized simultaneously, where the coupling efficiency was improved 50-fold. An optical beam shaper photometer (with a 7 cm long capillary) was fabricated and applied to detect water in ethanol with a detection limit of 12.5 ppm, which is 800-fold and 32∼80 fold lower than that of the commercial spectrometer (1 cm cuvette) and previous reports, respectively.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3