Affiliation:
1. Shanghai Institute of Laser Plasma
Abstract
Two new random polarization smoothing methods using full-aperture elements are proposed on low-coherence lasers, one using birefringent wedge and one using flat birefringent plate. By designing the crystal axis direction and wedge angle of the birefringent plates, the methods can selectively introduce time delay and spatial displacement, so as to obtain fast random evolution of transient polarization by utilizing low spatiotemporal coherence of the laser focal field. Both methods avoid the near field discontinuity and can be used under high fluence. The method using birefringent wedge can slightly improve focal spot uniformity, and the method using flat birefringent plate can obtain non-polarization with DOP lower than 2%. Theoretical studies show that the resulting focal polarization evolves rapidly on sub-picosecond timescales and rapidly covers the entire Poincaré sphere. The method using birefringent wedge is achieved in experiment. The results show that the degree of polarization of the focal spot is reduced from 1 to 0.27, which proves the effectiveness of the full-aperture random polarization smoothing. The full-aperture random polarization smoothing can generate a focal field very close to unpolarized thermal light, which is expected to suppress the laser plasmas instability.
Funder
Science Challenge Project
National Major Science and Technology Projects of China
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献