Topological flowers and spider webs in 3D vector fields

Author:

Pang XiaoyanORCID,Nyamdorj Bujinlkham,Zhao Xinying1ORCID

Affiliation:

1. Shaanxi Normal University

Abstract

Topological structures currently are of special interest in the integration of singular optics and topological photonics. In this article, the topological flowers and spider webs, which got less attention comparing to the lemon-, star- structures of the same category, are investigated in 3D vector fields. We show that by strongly focusing higher-order singular beams, both the spin density (SD) vectors and the polarization states of the transverse fields on the focal plane exhibit flowers and spider webs structures in topology with 2|m − 1| folds/sectors (m is the beam order), and the topological structures of the SD vectors are demonstrated to have a 90°/|m − 1| rotation. On the other hand, the topological theory also needs to be developed according to the rapid growth of topological photonics. Here, by defining a ‘relative topological charge’, we have observed and analyzed the topological reactions of the loops (composed of SD singularities) rather than the ‘point-type’ singularities in conventional reactions. More specially, the ‘radial index’ and ‘azimuthal index’ are proposed to characterize the topological features of the flowers and spider webs, and have been verified that the ‘radial index’ is peculiar to 3D vector fields and proportional to 1/|m − 1| in general. Our work provides a way to describe the topological behaviors of groups of singularities and supplies new parameters for measuring the topological patterns in 3D vector fields, which will rich the topological theory and may have applications in topological photonics.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Reference52 articles.

1. Singular optics;SoskinWolf,2001

2. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities

3. Singular optics: optical vortices and polarization singularities;DennisWolf,2009

4. Cones, spirals, and Möbius strips, in elliptically polarized light

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3