Research on the influence of the non-stationary effect of the magnetorheological finishing removal function on mid-frequency errors of optical component surfaces

Author:

Wang Bo12,Tie Guipeng123,Shi Feng12,Song Ci12,Guo Shuangpeng12

Affiliation:

1. National University of Defense Technology

2. Hunan Key Laboratory of Ultra-Precision Machining Technology

3. Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Abstract

With the continuous development of modern optical systems, the demand for full spatial frequency errors of optical components in the system is increasing. Although computer-controlled sub-aperture polishing technology can quickly correct low-frequency errors, this technology significantly worsens the mid-frequency errors on the surface of the component, which greatly inhibits the improvement of optical system performance. Therefore, we conducted in-depth research on the non-stationary effect of the removal function caused by the fluctuation in magnetorheological polishing and their influence on the mid-frequency errors of the component surface. We established a non-stationary profile model of the removal function and applied this model to simulate the distribution of mid-frequency errors on the surface of the processed component, considering the non-stationary effect. The simulation results showed that the non-stationary effect of the removal function weaken the mid-frequency ripple errors but increase other mid-frequency errors. Therefore, we first proposed the optimal single-material removal thickness corresponding to the non-stationary effect and experimentally verified the effectiveness of the optimal material removal thickness in suppressing mid-frequency errors. The experimental results showed that when the magnetorheological finishing single-material removal thickness is set to the optimal value, both the mid-frequency ripple errors and the mid-frequency RMS on the surface significantly decrease. Therefore, this work provides a basis for improving the existing magnetorheological finishing process and effectively suppressing the mid-frequency errors on the surface of processed components. It also provides theoretical and technical support for the magnetorheological processing and manufacturing of high-precision optical components. At the same time, the non-stationary effect and the corresponding analytical models has the potential to be extended to other polishing tools.

Funder

National Key Research and Development Program of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Natural Science Foundation of Hunan Province

Graduate Science and Technology Innovation Project of Hunan Prov.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3