Membrane-based optical fiber Bragg grating pressure sensor for health monitoring of pile foundations

Author:

Wu Wenjing1,Sun Bin1,Chen Shengyu1,Gong Weiming2,Wei HemingORCID

Affiliation:

1. Jiangsu University of Science and Technology

2. Southeast University

Abstract

A fiber Bragg grating (FBG) pressure sensor is proposed, designed, and fabricated for lateral earth pressure sensing, in which the FBG sensor is mounted on a 3D printed trestle structure combined with a membrane. The applied pressure can cause a deformation on the membrane, and then this deformation applied on the trestle structure causes tensile strain on the FBG. The proposed sensor is functionalized as a high-sensitive pressure transducer capable of converting the pressure into strain on the FBG. Here, the performance of the proposed sensor is numerically and experimentally investigated. The results show that the pressure sensitivity at 30°C is 10.62 pm/kPa within a range of 0–0.6 MPa. Due to the thermal expansion of the structure, the pressure sensitivity coefficient decreases with the increase of temperature; however, the cross effect between the temperature and strain on the sensing sensitivity is investigated and can be eliminated. The fabricated sensor has advantages of high sensitivity, good stability, and high pressure resolution, so it has potential in the field of structural health monitoring.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Open Fund of the Key Laboratory of Specialty Fiber Optics and Optical Access Networks

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3