Entanglement signatures for quantum synchronization with single-ion phonon laser

Author:

He Si-Wen12,Deng Zhi Jiao123ORCID,Xie Yi12,Wang Yan-Yi124,Chen Ping-Xing12

Affiliation:

1. National University of Defense Technology

2. Hunan Key Laboratory of Mechanism and Technology of Quantum lnformation

3. Hunan Normal University

4. Guangxi University of Science and Technology

Abstract

The entanglement properties of quantum synchronization, based on a single-ion phonon laser subjected to an external drive, have been studied. It is found that the maximum value of steady-state entanglement between the ion’s internal and external states occurs near the noiseless boundary from synchronization to unsynchronization, accompanied by noticeable oscillatory behaviors during the corresponding time evolution of entanglement. In addition, the later time dynamics of entanglement also indicates the occurrence of frequency entrainment, as evidenced by the strong consistency between the bending of the observed frequency and the emergence of Liouvillian exceptional points (LEPs) in the first two eigenvalues of the Liouvillian eigenspectrum. Moreover, the emergence of LEPs, which is intimately associated with frequency entrainment, should be widely observed in quantum synchronization and can be explored in LEPs-based applications.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3