Affiliation:
1. National University of Defense Technology
2. Hunan Key Laboratory of Mechanism and Technology of Quantum lnformation
3. Hunan Normal University
4. Guangxi University of Science and Technology
Abstract
The entanglement properties of quantum synchronization, based on a single-ion phonon laser subjected to an external drive, have been studied. It is found that the maximum value of steady-state entanglement between the ion’s internal and external states occurs near the noiseless boundary from synchronization to unsynchronization, accompanied by noticeable oscillatory behaviors during the corresponding time evolution of entanglement. In addition, the later time dynamics of entanglement also indicates the occurrence of frequency entrainment, as evidenced by the strong consistency between the bending of the observed frequency and the emergence of Liouvillian exceptional points (LEPs) in the first two eigenvalues of the Liouvillian eigenspectrum. Moreover, the emergence of LEPs, which is intimately associated with frequency entrainment, should be widely observed in quantum synchronization and can be explored in LEPs-based applications.
Funder
National Natural Science Foundation of China