Micro vision-based measurement of concentricity for both the TO base and active area of an APD chip in optical component packaging

Author:

Wang Xudong1ORCID,Liu Lin1,Ye Yutang1,Liu Juanxiu1,Chen Peng1,Zhang Jing1ORCID,Du Xiaohui1ORCID,Liu Yong1

Affiliation:

1. University of Electronic Science and Technology of China

Abstract

The avalanche photodiode (APD) chip is the core component of the transistor outline (TO). The concentricity between the inner circle (IC) of the APD active area and the outer circle (OC) of the TO base will directly affect a component’s key performance indicators, such as external quantum efficiency, receiving sensitivity and responsivity, thereby impacting quality assurance, performance improvement, and stable operation. Nevertheless, as the surge in demand for components increases, the traditional visual inspection relying on manual and microscope has been unable to meet the requirements of mass manufacturing for real-time quality and efficiency. Thus, a Concentricity Microscopic Vision Measurement System (CMVMS) mainly composed of a microscopic vision acquisition unit and an intelligent concentricity measurement unit has been proposed, designed, and implemented. On the basis of analyzing the 3D complex environment of TO components, a coaxial illumination image acquisition scheme that can take into account the characteristics of the OC and IC has been proposed. Additionally, a concentricity image measurement method based on dynamic threshold segmentation has been designed to reduce the interference of complex industrial environment changes on measurement accuracy. The experiment results show that the measurement accuracy of the CMVMS system is over 97%, and with a single measurement time of less than 0.2s, it can better meet the real-time and accuracy requirements. To the best of our knowledge, this is the first report on the realization of real-time concentricity measurement in optical component packaging, and this technology can be extended to other fields of concentricity measurement.

Funder

National Natural Science Foundation of China

University of Electronic Science and Technology of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3