Crosstalk suppression in CMOS terahertz detectors by using a mushroom-like AMC structure

Author:

Wang Ke,Liao Yiming1,Guo YaozuORCID,Zhou Shuyu,Liu Jie,Yan Feng,Ji XiaoliORCID

Affiliation:

1. Nanjing University of Science and Technology

Abstract

The suppression of the crosstalk in a CMOS THz detector is essential for enhancing the performance of detector arrays; however, it presents several technical challenges at the chip level. In this paper, a novel structure featuring a mushroom-like artificial magnetic conductor (M-AMC) is developed to suppress the crosstalk between CMOS THz detectors with on-chip antennas. Three-dimensional simulation results show that the M-AMC structure, which is designed by metal Al and doped-Si materials in the CMOS process, not only reduces the transmission coefficient of the electromagnetic wave between adjacent pixels but also enhances the electric field of the target pixels. A 0.65 THz detector array with a M-AMC structure based on the on-chip antenna was fabricated. Experimental results present that after implanting the M-AMC structure, the noise equivalent power (NEP) at the central frequency of pixels significantly decreases by 315.5%. Moreover, the distribution of NEP becomes more uniform, as evidenced by a reduction in the standard deviation coefficient of 26.3%. This demonstrates the effectiveness of the method in suppressing crosstalk and improving the responsivity of CMOS THz detectors, which can be used for high-performance THz detector arrays.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3