Abstract
Imaging the complex dynamics of micro-vibrations plays a fundamental role in the investigation of microelectromechanical systems (MEMS). However, it remains a challenge for achieving both a wide bandwidth and a low noise due to the high photodetector noise and electromagnetic interference at GHz frequencies. Here, we propose a pulsed laser interferometry system with an adaptable switch to image GHz vibrations based on stroboscopic mixing, while measuring lower-frequency vibrations based on the homodyne scheme. The noise power spectral density is shown in both regions from DC to 10 GHz with an average noise down to 30.8 fm/√Hz at GHz frequencies, which holds the highest resolution to the best of our knowledge. Vibrational amplitude and phase mappings of a kHz comb-drive resonator, a GHz piezoelectric transducer, and a GHz film bulk acoustic resonator are presented with animated visualizations and k-space analysis, paving a new paradigm for the first time to image and analyze various MEMS devices of a bandwidth spanning 10 orders of magnitude.
Funder
Science and Technology Innovation Plan of Shanghai Science and Technology Commission
National Natural Science Foundation of China