Parallel synthetic aperture transport-of-intensity diffraction tomography with annular illumination

Author:

Ullah HabibORCID,Li JiajiORCID,Zhou ShunORCID,Bai Zhidong,Ye Ran1ORCID,Chen QianORCID,Zuo ChaoORCID

Affiliation:

1. Nanjing Normal University

Abstract

Transport-of-intensity diffraction tomography (TIDT) is a recently developed label-free computational microscopy technique that retrieves high-resolution three-dimensional (3D) refractive index (RI) distribution of biological specimens from 3D intensity-only measurements. However, the non-interferometric synthetic aperture in TIDT is generally achieved sequentially through the acquisition of a large number of through-focus intensity stacks captured at different illumination angles, resulting in a very cumbersome and redundant data acquisition process. To this end, we present a parallel implementation of a synthetic aperture in TIDT (PSA-TIDT) with annular illumination. We found that the matched annular illumination provides a mirror-symmetric 3D optical transfer function, indicating the analyticity in the upper half-plane of the complex phase function, which allows for recovery of the 3D RI from a single intensity stack. We experimentally validated PSA-TIDT by conducting high-resolution tomographic imaging of various unlabeled biological samples, including human breast cancer cell lines (MCF-7), human hepatocyte carcinoma cell lines (HepG2), Henrietta Lacks (HeLa) cells, and red blood cells (RBCs).

Funder

National Natural Science Foundation of China

National Major Scientific Instrument Development Project

Leading Technology of Jiangsu Basic Research Plan

Youth Foundation of Jiangsu Province

Biomedical Competition Foundation of Jiangsu Province

Key National Industrial Technology Cooperation Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3