Modeling for extracavity-pumped terahertz parametric oscillators

Author:

Wang Zecheng1,Fan Shuzhen1ORCID,Chen Xiaohan,Zhang Xingyu,Cong Zhenhua,Liu Zhaojun,Qin Zengguang,Ming Na1,Guo Quanxin1ORCID,Guo Liyuan1

Affiliation:

1. Shandong University

Abstract

This paper presents a modeling method for extracavity-pumped terahertz parametric oscillators (TPO) based on stimulated polariton scattering, in which the pumping beam is from a different laser, and the Stokes beam oscillates in its cavity. After suitable approximations and assumptions, the average THz wave amplitude in the nonlinear crystal is expressed as a function of the fundamental and Stokes wave amplitudes. Then the rate equation for the Stokes wave is obtained based on the Stokes wave increment within a cavity roundtrip timescale. After solving the Stokes wave rate equation, the Stokes wave temporal evolution is considered as a known parameter, and the properties of the residual fundamental and terahertz waves are obtained by numerically solving the coupled wave equations. This modeling method is applied to an extracavity-pumped TPO based on MgO:LiNbO3 crystal. The simulation results are basically consistent with the experimental results. The main reasons causing the deviations of the simulation results from the experimental results are analyzed. To the best of our knowledge, this is the first time to perform the modeling for extracavity-pumped Q-switched TPOs.

Funder

National Natural Science Foundation of China

Key Technology Research and Development Program of Shandong

Natural Science Foundation of Shandong Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3