Affiliation:
1. Hefei University of Technology
2. Guilin University of Electronic Technology
Abstract
In this work, a new and efficient terahertz reflective phase shifter is proposed. The phase shifter is composed of a metal-dielectric-metal structure with a double dipole patch array, as well as copper grating electrodes immersed within the nematic liquid crystal. More specifically, the employed copper grating electrodes consist of two sets of cross-distributed comb grids, whereas at each set of comb grids can be applied an external bias voltage separately. On top of that, the electric field in the liquid crystal (LC) layer can be continuously changed by enforcing an innovative technique. Consequently, the orientation of the LC molecules was fully controlled by the applied electric field, since the dielectric constant of the LC is controlled by the biased voltage. The phase of the reflective electromagnetic wave can be continuously manipulated. Under this direction, the experimental results show that the phase shift exceeds the value of 180° in the range of 102.5 GHz-104.3 GHz, where the maximum phase shift is 249° at 103 GHz. The proposed work provides a new regulation concept for the implementation of LC-based terahertz devices and the respective applications in the terahertz reconfigurable antennas field.
Funder
National Natural Science Foundation of China
Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, Guilin University of Electronic Technology
Subject
Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献