Simultaneously precise frequency response and IQ skew calibration in a self-homodyne coherent optical transmission system

Author:

Dai Longquan1,Huang Chuanming1,Li Hongyu1,Cheng Mengfan1ORCID,Yang Qi1,Tang Ming1ORCID,Liu Deming1,Deng Lei1ORCID

Affiliation:

1. Huazhong University of Science and Technology

Abstract

The self-homodyne coherent detection (SHCD) system is becoming more popular in intra-data center applications nowadays. However, for a high-speed SHCD system, the device imperfection such as transmitter (Tx) and receiver (Rx) side in-phase (I)/quadrature-phase (Q) time skew and bandwidth limitation will greatly restrict the transmission performance. The current mainstream calibration methods for traditional optical transceivers rely on the effect of frequency offset and phase noise to separate the Tx and Rx imperfection, which is not compatible with the SHCD system. In this paper, we have proposed and demonstrated a highly precise calibration method that can be applied in dual-polarization (DP) SHCD system. Based on the specially designed multi-tone signals, the amplitude/phase frequency response (AFR/PFR) of the transceiver and the Tx/Rx IQ skew can be obtained by just one measurement even after long-distance fiber transmission. By using a 4 MHz linewidth distributed feedback (DFB) laser, a DP SHCD transmission system combined with a 20 GHz optical transceiver and two 10 km standard single-mode fibers is experimentally constructed. The test results indicate that the measurement error of the AFR/PFR and Tx/Rx skew are within ±1dB/±0.15rad and ±0.3ps respectively, and the dynamic range for IQ skew calibration can reach dozens of picoseconds. The measured bit error rate value of 46GBaud DP-16QAM signals/35GBaud DP-64QAM signals are improved from 2.30e-2 to 2.18e-3/9.59e-2 to 2.20e-2 with the help of the proposed calibration method.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Training Sequences Design for Simultaneously Transceiver IQ Skew Estimation in Coherent Systems;Journal of Lightwave Technology;2024-08-01

2. IQ Skew and Imbalance Estimation for Coherent Point-to-Multi-Point Optical Networks;Journal of Lightwave Technology;2024-08-01

3. Frequency-dependent impairment calibration and estimation for a 96 GBaud coherent optical transceiver;Communications Engineering;2024-01-05

4. Baud-Rate Clock Recovery and Adaptive Equalization for Intra-Data Center Self-Homodyne Coherent Links;2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM);2023-11-04

5. Simultaneous Frequency-dependent Impairments Calibration for 96GBaud Coherent Optical Transceiver;2023 Optical Fiber Communications Conference and Exhibition (OFC);2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3