Numerical and experimental investigation of a dispersive optoelectronic oscillator for chaotic time-delay signature suppression

Author:

Feng Changan,Li Song-SuiORCID,Li Jiangwei,Zou XihuaORCID,Zhang LiyueORCID,Jiang Lin,Wang Longsheng12,Wang Anbang12,Pan Wei,Yan LianshanORCID

Affiliation:

1. Taiyuan University of Technology

2. Key Lab of Advanced Transducers & Intelligent Control System (Taiyuan University of Technology)

Abstract

Chaos generation from a novel single-loop dispersive optoelectronic oscillator (OEO) with a broadband chirped fiber Bragg grating (CFBG) is numerically and experimentally investigated. The CFBG has much broader bandwidth than the chaotic dynamics such that its dispersion effect rather than filtering effect dominates the reflection. The proposed dispersive OEO exhibits chaotic dynamics when sufficient feedback strength is guaranteed. Suppression of chaotic time-delay signature (TDS) is observed as the feedback strength increases. The TDS can be further suppressed as the amount of grating dispersion increases. Without compromising bandwidth performance, our proposed system extends the parameter space of chaos, enhances the robustness to modulator bias variation, and improves TDS suppression by at least five times comparing to the classical OEO. Experimental results qualitatively agree well with numerical simulations. In addition, the advantage of dispersive OEO is further verified by experimentally demonstrating random bit generation with tunable rate up to 160 Gbps.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Science Fund for Distinguished Young Scholars of Sichuan Province

Sichuan Science and Technology Program

111 Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3