Ridge resonators with compact guided mode coupling

Author:

Tang PhuongORCID,Schoenhardt Steffen1ORCID,Ren GuanghuiORCID,Han Xu2,Boes Andreas3ORCID,Tian Yonghui2ORCID,Nguyen Thach G.ORCID,Mitchell ArnanORCID

Affiliation:

1. University of Shanghai for Science and Technology

2. Lanzhou University

3. University of Adelaide

Abstract

Ridge resonators are a recently introduced integrated photonic circuit element based on bound states in the continuum (BICs) which can produce a single, sharp resonance over a broad wavelength range with high extinction ratio. However, to excite these resonators, a broad beam of laterally unbound slab mode is required, resulting in a large device footprint, which is not attractive for integrated photonic circuits. In this contribution, we propose and numerically validate a guided-mode waveguide structure that can be analogue to the BIC-based ridge resonators. Our simulations show that the proposed guided-mode waveguide structure can produce resonances with similar characteristics, yet with a significantly reduced footprint. Furthermore, we investigate the influence of the resonator’s dimensions on the bandwidth of the resonance, demonstrating that resonances with Q-factors from low to very high (> 10000) are feasible. We believe that the reduced footprint and ability to design filters systematically make the guided-mode waveguide resonators an attractive photonic circuit component with particular value for foundry fabricated silicon photonic circuits.

Funder

Australian Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3