Single-channel system for joint unambiguous measurement of DFS and AOA based on serrodyne modulation

Author:

Li Yan,Guo Yuxiao,Yin Bin1ORCID,Wang ZixiaoORCID,He Qinglong,Wang MuguangORCID

Affiliation:

1. Ocean University of China

Abstract

In this paper, a photonic-assisted system for simultaneous and unambiguous measurement of the Doppler frequency shift (DFS) and angle-of-arrival (AOA) using a dual-parallel dual-drive Mach–Zehnder modulator (DP-DDMZM) is proposed and investigated. The echo signals received by two receiving antennas are applied to the radio frequency ports of one sub-DDMZM of the DP-DDMZM. The bias port of the sub-DDMZM is fed by a binary electrical signal that is used to construct two different mapping curves on the relationship between the phase difference and the power of the output intermediate frequency (IF) signal. Therefore, unambiguous AOA measurement with extended range can be realized. The transmitted signal is input into the other sub-DDMZM to implement single-sideband modulation, which is then frequency shifted based on serrodyne modulation. Both the value and direction of DFS can be derived intuitively from the frequency of the output IF signal. Simulation results show that the measurement error of unambiguous DFS measurement is no more than ±0.008Hz in the range of −100kHz to 100 kHz, and the measurement error of unambiguous AOA is less than ±0.2 in the range of −70.8 to 70.8°. Moreover, since the scheme does not involve the construction of multi-channels or use of any filter or polarization dependent device, the system has concise structure, high accuracy, large operating bandwidth, and strong robustness, and can be considered as a very promising solution for actual applications.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3