Microwave photonics frequency measurement with improved accuracy based on an artificial neural network

Author:

An Xin,Yang Zhangyi,Liu Zuoheng,Zhang Youdi,Dong Wei

Abstract

Photonics-assisted techniques for microwave frequency measurement (MFM) show great potential for overcoming electronic bottlenecks, with wild applications in radar and communication. The MFM system based on the stimulated Brillouin scattering (SBS) effect can measure the frequency of multiple high-frequency and wide-band signals. However, the accuracy of the MFM system in multi-tone frequency measurement is constrained by the SBS bandwidth and the nonlinearity of the system. To resolve this problem, a method based on an artificial neural network (ANN) is suggested, which can establish a nonlinear mapping between the measured two-tone signal spectra and the theoretical frequencies. Through simulation verification, the ANN optimized frequencies within the range of (0.5, 27) GHz of the MFM system show 79%, 76%, 70%, 44% reduction in errors separately under four spectral signal-to-noise ratios (SNR) conditions, 20 dB, 15 dB, 10 dB, 0 dB, and the frequency resolution is improved from 30 MHz to 10 MHz.

Funder

Development Plan of Jilin Province

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3