Hybrid cubic-chessboard metasurfaces for wideband angle-independent diffusive scattering and enhanced stealth

Author:

Al-Nuaimi Mustafa K. Taher12ORCID,Whittow William G.,Huang Guan-Long1,Chen Rui-Sen1,Shao Qiang1

Affiliation:

1. Foshan University

2. Southeast University

Abstract

Because of the shortcomings associated with their scattering patterns, both the chessboard and cubic phased metasurfaces show non-perfect diffusion and hence sub-optimal radar cross section reduction (RCSR) properties. This paper presents a novel and powerful hybrid RCSR design approach for diffusive scattering by combining the unique attributes of cubic phase and chessboard phase profiles. The hybrid phase distribution is achieved by simultaneously imposing two distinct phase profiles (chessboard and cubic) on the hybrid metasurface area with the aid of geometric phase theory to further enhance the diffusive scattering and RCSR. It is shown in this paper that through the integration of cubic and chessboard phase profiles, a metasurface with the hybrid phase mask successfully overcomes all the above issues and shortcomings related to the RCSR of both chessboard and cubic metasurfaces. In addition, the proposed design leverages the unique scattering properties offered by these distinct phase profiles to achieve enhanced stealth capabilities over wide frequency ranges and for large incidence angles. Simulation and measurement results show that the designed hybrid metasurfaces using the proposed strategy achieved RCSR and low-level diffused scattering patterns from 12–28 GHz (80%) for normal incidence of a far-field CP radar plane wave. The hybrid metasurface shows a stable angular diffusion and RCSR performance when the azimuthal and elevation incidence angles are in the range of 0° → ± 75° which is wider than other designs in the literature. Therefore, this work can make objects significantly less detectable in complex radar environments when enhanced stealth is required.

Funder

Engineering and Physical Sciences Research Council

Newton International Fellowship

State Key Laboratory of Millimeter Waves

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3