Hyperspectral in-memory computing with optical frequency combs and programmable optical memories

Author:

Latifpour Mostafa Honari12,Park Byoung Jun13,Yamamoto Yoshihisa1,Suh Myoung-Gyun1ORCID

Affiliation:

1. NTT Research, Inc.

2. City University of New York

3. Korea University

Abstract

The rapid rise of machine learning drives demand for extensive matrix-vector multiplication operations, thereby challenging the capacities of traditional von Neumann computing systems. Researchers explore alternatives, such as in-memory computing architecture, to find energy-efficient solutions. In particular, there is renewed interest in optical computing systems, which could potentially handle matrix-vector multiplication in a more energy-efficient way. Despite promising initial results, developing high-throughput optical computing systems to rival electronic hardware remains a challenge. Here, we propose and demonstrate a hyperspectral in-memory computing architecture, which simultaneously utilizes space and frequency multiplexing, using optical frequency combs and programmable optical memories. Our carefully designed three-dimensional opto-electronic computing system offers remarkable parallelism, programmability, and scalability, overcoming typical limitations of optical computing. We have experimentally demonstrated highly parallel, single-shot multiply-accumulate operations with precision exceeding 4 bits in both matrix-vector and matrix-matrix multiplications, suggesting the system’s potential for a wide variety of deep learning and optimization tasks. Our approach presents a realistic pathway to scale beyond peta operations per second, a major stride towards high-throughput, energy-efficient optical computing.

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3