Affiliation:
1. University of Science and Technology of China
2. University of Vienna
Abstract
Traditional refrigeration is driven either by external forces or by the information-feedback mechanism. Surprisingly, quantum measurement and collapse, typically viewed as detrimental, can also power a quantum cooling engine without requiring any feedback mechanism. In this work, we perform a proof-of-principle demonstration of quantum measurement cooling (QMC) powered by entangled measurements using a highly controllable linear optical simulator. The simulator can simulate qubits with different energy-level spacings and their thermalizing processes at different temperatures, and also allows for arbitrary projections of two qubits at different energy levels. We show the effect of changes in energy levels and measurement bases on the cooling process and demonstrate the robustness of QMC. These results reveal the special role of entangled measurements in quantum thermodynamics, indicate that quantum measurement is not always detrimental but can be a valuable thermodynamic resource. Our setup also offers a highly controllable simulation platform for multiqubit quantum engines.
Funder
National Natural Science Foundation of China
Innovation Program for Quantum Science and Technology
USTC Center for Micro and Nanoscale Research and Fabrication.