Miniaturized computational spectrometer based on two-photon absorption

Author:

Zhao Yaotian1ORCID,Guo Xuhan1ORCID,Xiang Jinlong1ORCID,Zhao Zhenyu1,Zhang Yujia1,Xiao Xi2,Liu Jia3,Chen Daigao3,Su Yikai1ORCID

Affiliation:

1. Shanghai Jiao Tong University

2. China Information and Communication Technologies Group Corporation (CICT)

3. National Optoelectronics Innovation Center

Abstract

On-chip spectrometers hold significant promise in the development of laboratory-on-a-chip applications. However, the spectrometers usually require extra on-chip or off-chip photodetectors (PDs) to sense optical signals, resulting in increased footprints and costs. In this paper, we address this issue by proposing a fully on-chip spectrometer based on two-photon absorption (TPA) in a simple micro-ring resonator (MRR) configuration. While TPA is a commonly undesired phenomenon in conventional silicon devices due to its attached absorption losses and nonlinearity, we exploit it as a powerful and efficient tool for encoding spectral information, instead of using additional PDs. The input spectrum can be reconstructed from the sensed TPA current. Our proposed spectrometer achieves a bandwidth of 10 nm with a resolution of 0.4 nm while occupying a small footprint of only 16×16µm2, and the bandwidth can be further improved through several cascaded MRRs. This advancement could enable forward fully integrated and miniaturized spectrometers with low cost, which holds far-reaching applications in in situ biochemical analysis, remote sensing, and intelligent healthcare.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shanghai Municipal Science and Technology Major Project

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3