Acoustic-feedback wavefront-adapted photoacoustic microscopy

Author:

Shen Yuecheng1ORCID,Ma Jun2ORCID,Hou Chengtian2ORCID,Zhao Jiayu3,Liu YanORCID,Hsu Hsun-Chia4,Wong Terence T. W.5ORCID,Guan Bai-Ou2ORCID,Zhang Shian1ORCID,Wang Lihong V.4ORCID

Affiliation:

1. East China Normal University

2. Jinan University

3. Sun Yat-Sen University

4. California Institute of Technology

5. Hong Kong University of Science and Technology

Abstract

Optical microscopy is indispensable to biomedical research and clinical investigations. As all molecules absorb light, optical-resolution photoacoustic microscopy (PAM) is an important tool to image molecules at high resolution without labeling. However, due to tissue-induced optical aberration, the imaging quality degrades with increasing imaging depth. To mitigate this effect, we develop an imaging method, called acoustic-feedback wavefront-adapted PAM (AWA-PAM), to dynamically compensate for tissue-induced aberration at depths. In contrast to most existing adaptive optics assisted optical microscopy, AWA-PAM employs acoustic signals rather than optical signals to indirectly determine the optimized wavefront. To demonstrate this technique, we imaged zebrafish embryos and mouse ears in vivo. Experimental results show that compensating for tissue-induced aberration in live tissue effectively improves both signal strength and lateral resolution. With this capability, AWA-PAM reveals fine structures, such as spinal cords and microvessels, that were otherwise unidentifiable using conventional PAM. We anticipate that AWA-PAM will benefit the in vivo imaging community and become an important tool for label-free optical imaging in the quasi-ballistic regime.

Funder

National Natural Science Foundation of China

National Institutes of Health

Chan Zuckerberg Initiative Donor-Advised Fund (DAF) at the Silicon Valley Community Foundation

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3