Abstract
Silicon photonics leverages mature semiconductor technology to produce cost-effective and high-performance components for various applications in data centers, artificial intelligence, and quantum computing. While the geometry of photonic integrated circuits can be characterized by existing means, their optimal and accurate performance requires detailed characterization of the light propagating within them. Here we demonstrate the first, to our knowledge, direct visualization of the light as it travels inside photonic integrated circuits. We employ the natural nonlinear optical properties of silicon to directly map the electric field of the waves guided inside the integrated circuits, characterizing waveguides and multimode splitters while extracting various parameters of the device—all in real-time and in a noninvasive manner. Our approach for visualizing light inside photonic circuits is the only solution directly providing such information without any overhead or penalty, potentially making it a crucial component for the characterization of photonic circuitry, toward their improved design, fabrication, and optimization.
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献