GHz repetition rate mid-infrared frequency comb spectroscopy of fast chemical reactions

Author:

Hoghooghi Nazanin1ORCID,Chang Peter1,Egbert Scott1,Burch Matt2,Shaik Rizwan2,Diddams Scott A.1,Lynch Patrick2ORCID,Rieker Gregory B.1

Affiliation:

1. University of Colorado

2. University of Illinois Chicago

Abstract

Molecular diagnostics are a primary tool of modern chemistry, enabling researchers to map chemical reaction pathways and rates to better design and control chemical systems. Many chemical reactions are complex, involving multiple species and reaction pathways occurring on µs or shorter timescales. Existing diagnostic approaches provide a subset of chemical and thermodynamic information. Here we optimize across many diagnostic objectives by introducing a high-speed and broadband, mid-infrared dual-frequency-comb absorption spectrometer. The optical bandwidth of >1000cm−1 covers absorption fingerprints of many species with spectral resolution <0.03cm−1 to accurately discern their absolute quantities. Key to this advance are 1 GHz pulse repetition rate mode-locked frequency combs covering the 3–5 µm region that enable a spectral acquisition rate of 290cm−1 per 17.5 µs per detector for in situ tracking of fast chemical process dynamics. We demonstrate this system to quantify the abundances and temperatures of each species in the complete reactants-to-products breakdown of 1,3,5-trioxane, which exhibits a formaldehyde decomposition pathway that is critical to modern low-temperature combustion systems. By maximizing the number of observed species and improving the accuracy of temperature and concentration measurements, this spectrometer provides a pathway for modern chemistry approaches such as combining chemical models with machine learning to constrain or predict complex reaction mechanisms and rates.

Funder

National Science Foundation

Air Force Research Laboratory

Air Force Office of Scientific Research

National Institute of Standards and Technology

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3