Control of intense light with avalanche-ionization plasma gratings

Author:

Edwards M. R.1ORCID,Waczynski S.2,Rockafellow E.2,Manzo L.1,Zingale A.2,Michel P.1,Milchberg H. M.2ORCID

Affiliation:

1. Lawrence Livermore National Laboratory

2. Institute for Research in Electronics and Applied Physics, University of Maryland

Abstract

High-peak-power lasers are fundamental to high-field science: increased laser intensity has enabled laboratory astrophysics, relativistic plasma physics, and compact laser-based particle accelerators. However, the meter-scale optics required for multi-petawatt lasers to avoid light-induced damage make further increases in power challenging. Plasma tolerates orders-of-magnitude higher light flux than glass, but previous efforts to miniaturize lasers by constructing plasma analogs for conventional optics were limited by low efficiency and poor optical quality. We describe a new approach to plasma optics based on avalanche ionization of atomic clusters that produces plasma volume transmission gratings with dramatically increased diffraction efficiency. We measure an average efficiency of up to 36% and a single-shot efficiency of up to 60%, which is comparable to key components of high-power laser beamlines, while maintaining high spatial quality and focusability. These results suggest that plasma diffraction gratings may be a viable component of future lasers with peak power beyond 10 PW.

Funder

Lawrence Livermore National Laboratory

National Science Foundation

Air Force Office of Scientific Research

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3