Far-field speckle correlations as a function of object position for microscopically distinguishing objects hidden in a randomly scattering medium

Author:

Hastings Ryan L.1ORCID,Alexander David W.1ORCID,Webb Kevin J.1ORCID

Affiliation:

1. Purdue University

Abstract

Super-resolution optical sensing is of critical importance in science and technology and has required prior information about an imaging system or obtrusive near-field probing. Additionally, coherent imaging and sensing in heavily scattering media such as biological tissue has been challenging, and practical approaches have either been restricted to measuring the field transmission of a single point source, or to where the medium is thin. We present the concept of far-subwavelength spatial sensing with relative object motion in speckle as a means to coherently sense through heavy scatter. Experimental results demonstrate the ability to distinguish nominally identical objects with nanometer-scale translation while hidden in randomly scattering media, without the need for precise or known location and with imprecise replacement. The theory and supportive illustrations presented provide the basis for super-resolution sensing and the possibility of virtually unlimited spatial resolution, including through thick, heavily scattering media with relative motion of an object in a structured field. This work provides enabling opportunities for material inspection, security, and biological sensing.

Funder

Sandia National Laboratories

National Science Foundation

Directorate for Engineering

Directorate for Computer and Information Science and Engineering

Air Force Office of Scientific Research

KLA Corporation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3