Towards a photonic integrated all-optical phase regenerator

Author:

Han Xinjie1,Ke Haocheng1,Wen Huashun2,Dong Wenchan3ORCID,Fan Yunru1,Deng Guangwei1,Zhou Qiang1ORCID,Zhou Heng1,Qiu Kun1,Xu Jing3,Geng Yong1

Affiliation:

1. University of Electronic Science and Technology of China

2. Institute of Semiconductors

3. Huazhong University of Science and Technology

Abstract

All-optical phase regeneration aims at restoring the phase information of coherently encoded data signals directly in the optical domain so as to compensate for phase distortions caused by transceiver imperfections and nonlinear impairments along the transmission link. Although it was proposed two decades ago, all-optical phase regeneration has not been seen in realistic networks to date, mainly because this technique entails complex bulk modules and relies on high-precision phase sensitive nonlinear dynamics, both of which are adverse to field deployment. Here, we demonstrate a new, to the best of our knowledge, architecture to implement all-optical phase regeneration using integrated photonic devices. In particular, we realize quadrature phase quantization by exploring the phase-sensitive parametric wave mixing within on-chip silicon waveguides, while multiple coherent pump laser tones are provided by a chip-scale micro-cavity Kerr frequency comb. Multi-channel all-optical phase regeneration is experimentally demonstrated for 40 Gbps QPSK data, achieving the best SNR improvement of more than 6 dB. Our study showcases a promising avenue to enable the practical implementation of all-optical phase regeneration in realistic long-distance fiber transmission networks.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Sichuan Province Science and Technology Support Program

Fundamental Research Funds for the Central Universities

State Key Laboratory of Advanced Optical Communication Systems and Networks

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3