Affiliation:
1. Zhejiang A&F University
2. Soochow University
3. Shandong Normal University
Abstract
In this paper, we introduce a novel kind of abrupt autofocusing beams namely the generalized circular Airy derivative beams (CADBs) as an extension of circular Airy beam (CAB). The propagation dynamics of the CADBs is examined theoretically. Our results show that the CADBs exhibit stronger autofocusing ability than the CAB under the same condition. The physical mechanism of the abruptly autofocusing of the CADBs is interpreted by mimicking the Fresnel zone plate lens. Here, the abruptly autofocusing ability is described by a ratio K = Ifm/I0m where Ifm and I0m correspond to the maximum intensities in the focal and the source planes, respectively. As an example, the K-value of the circular Airyprime beam (CAPB, the first-order Airy derivative beam) is about 7 times of that of the CAB. In addition, the CAPB have narrower FWHM (full width at half maxima) in the focus position than the CAB, and the focal spot size of the CAPB is smaller than that of the CAB. Furthermore, we establish an optical system involving a phase-only spatial light modulator to generate the CAPB and measure its autofocusing characteristics experimentally. The measured K-value is about 9.4 percentage error between theory and experiment owing to the imperfection generation of the CAPB. The proposed generalized CADBs will find applications in biomedical treatment, optical manipulation and so on.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献