Method of high-precision free-space distance measurement for noncooperative targets

Author:

Hou Yibing,Kang JiehuORCID,Yue JiantaoORCID,Li HongtongORCID,Xue Ting1,Wu Bin

Affiliation:

1. Tianjin University

Abstract

Aimed at high-precision distance measurement for noncooperative targets in free space, a spatial distance measurement method is proposed. Based on the concept of optical carrier-based microwave interferometry, this method extracts distance information from the radiofrequency domain. The interference model of broadband light beams is established, and the optical interference can be eliminated by using a broadband light source. A spatial optical system with a Cassegrain telescope as the main body is designed to effectively receive the backscattered signal without cooperative targets. A free-space distance measurement system is built to verify the feasibility of the proposed method, and the results agree well with the set distances. Long-distance measurements with a resolution of 0.033 µm can be achieved, and the errors of the ranging experiments are within 0.1 µm. The proposed method has the advantages of fast processing speed, high measurement accuracy, and high immunity to disturbances as well as the potential for measurement of other physical quantities.

Funder

Sichuan Province Science and Technology Support Program

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3