Geometrical optical analysis of a gradient refractive index microresonator

Author:

Chen Tianci1ORCID,Kang Zhaofeng1,Yang Yu1,Zhao Shuai1ORCID,Zhang Jun1,Zhang Lei1,Wang Keyi1

Affiliation:

1. University of Science and Technology of China

Abstract

Optical microresonators confine light to small volumes through resonant circulation. Herein, whispering gallery mode (WGM) microresonators have high Q factors among these microresonators, which have significant research value in the fields of fundamental physics research and optoelectronic devices. However, maintaining a very high surface finish on the side of the microresonator is necessary, as is keeping a coupling distance of tens of nanometers between the microresonator and the coupling waveguide. Thus, this makes the fabrication, coupling, and packaging of the microresonator very difficult and seriously hinders the practical application of the microresonator. In this study, the concept of gradient refractive index (GRIN) microresonator is proposed, and the radial GRIN is introduced to change the light direction and form a closed optical path within the microresonator. Herein, the mode field position of the GRIN microresonator is derived from the light transmission equation, and the theoretical result is proved by finite difference time domain (FDTD) simulation. Hence, there are several advantages to using this novel optical microresonator, including its high Q factor, strong coupling stability, and ease of integration.

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large mode volume microresonator with a gradient refractive index;Journal of the Optical Society of America B;2024-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3