Scattering and absorption properties modification of optically cleared skeletal muscles: an ex vivo study

Author:

Sheet Ahmed H.1,Hamdy Omnia1ORCID,Abdel-Harith Mohamed1ORCID

Affiliation:

1. Cairo University

Abstract

Optical clearing is a relatively new approach to enhancing the optical transparency of biological tissues by reducing their scattering properties. The optical clearing effect is achievable via various chemical, physical, and photo-thermal techniques. The present work studied optical parameters of bovine skeletal muscles under different clearing protocols: immersion optical clearing in 99% glycerol and photo-thermal optical clearing via exposure to IR laser irradiation. Moreover, the two techniques were combined with different immersion time intervals after multiple exposure periods to get optimum results. The muscle samples’ diffuse reflectance and total transmittance were measured using a single integrating sphere and introduced to the Kubleka–Munk mathematical model to determine the absorption and reduced scattering coefficients. Results revealed a 6% scattering reduction after irradiating the sample for 10 min and immersing it in glycerol for 18 min and 8% after 20 min of laser irradiation and 18 min of immersion. Moreover, increases of 6.5% and 7.5% in penetration depth were prominent for the total treatment times of 28 min and 38 min, respectively. Furthermore, the measurements’ accuracy and sensitivity were analyzed and evaluated using the receiver operating characteristic method. The accuracy ranged from 0.93 to 0.98, with sensitivity from 0.93 to 0.99 for each clearing protocol. Although laser irradiation and application of 99% glycerol separately produced scattering light reduction, the maximal clearing effect was obtained while irradiating the sample with a laser for 20 min and then immersing it in 99% glycerol for a maximum of 18 min.

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3