Efficient surface defect identification for optical components via multi-scale mixed Kernels and structural re-parameterization

Author:

Liang Xiao1ORCID,Zhen Hancen1,Wang Xuewei,Li Jie,Han Yanjun,Guo Jingbo1

Affiliation:

1. Shijiazhuang Tiedao University

Abstract

Surface defect identification plays a vital role in defective component rapid screening tasks in optics-related industries. However, the weakness and complexity of optical surface defects pose considerable challenges to their effective identification. To this end, a deep network based on multi-scale mixed kernels and structural re-parameterization is proposed to identify four manufacturing and two non-manufacturing optical surface defects. First, we design a multi-size mixed convolutional kernel with multiple receptive fields to extract rich shallow features for characterizing the defects with varying scales and irregular shapes. Then, we design an asymmetric mixed kernel integrating square, horizontal, vertical, and point convolutions to capture rotationally robust middle-and-deep features. Moreover, a structural re-parameterization strategy is introduced to equivalently convert the multi-branch architecture in the training phase into a deploy-friendly single-branch architecture in the inference phase, so that the model can obtain higher inference speed without losing any performance. Experiments on an optical surface defect dataset demonstrate that the proposed method is efficient and effective. It achieves a remarkable accuracy of 97.39% and an ultra-fast inference speed of 201.76 frames/second with only 5.23M parameters. Such a favorable accuracy–speed trade-off is capable of meeting the requirements of real-world optical surface defect identification applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Science and Technology Project of Hebei Education Department

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3