Abstract
In a free space optical communication (FSOC) system, atmospheric turbulence will increase the bit error ratio (BER) and impair FSOC link reliability. Since computational temporal ghost imaging (CTGI) has anti-interference, we present an FSOC system over atmospheric turbulence based on CTGI. The simulation results show that the BER performance of CTGI is better than on–off keying under different atmospheric turbulence regimes. To improve the performance of the CTGI scheme, the influence of the number of transmission samples and code length is analyzed. It is shown that BER performance improves with the increment of the number of samples, while code length has no impact. This scheme provides an idea for reliable communication over atmospheric turbulence and an important reference for improving wireless optical communication in an extreme environment.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Fundamental Research Funds for the Central Universities
Subject
Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献