Investigation of single-shot high-speed photography based on spatial frequency multiplexing

Author:

Li Hang123,Li YaHui13ORCID,Wang Xing13,Tian Jinshou13

Affiliation:

1. Chinese Academy of Sciences

2. University of Chinese Academy of Sciences

3. Shanxi University

Abstract

The frequency recognition algorithm for multiple exposures (FRAME) is a spatial frequency multiplexing method that enables high-speed videography with high spatial resolution across a wide field of view and high temporal resolution up to femtoseconds. The criterion to design encoded illumination pulses is an essential factor that affects the sequence depth and reconstruction accuracy of FRAME but was not previously discussed. When the spatial frequency is exceeded, the fringes on digital imaging sensors can become distorted. To exploit the Fourier domain for FRAME with deep sequences and avoid fringe distortion, the maximum Fourier map for sequence arrangement was determined to be a diamond shape. The maximum axial frequency should be a quarter of the sampling frequency of digital imaging sensors. Based on this criterion, the performances of reconstructed frames were theoretically investigated by considering arrangement and filtering methods. To ensure optimal and uniform interframe quality, the frames near the zero frequency should be removed and optimized super-Gaussian filters should be employed. Experiments were conducted flexibly with a digital mirror device to generate illumination fringes. Following these suggestions, the movement of a water drip dropping on a water surface was captured with 20 and 38 frames with uniform interframe quality. The results prove the effectiveness of the proposed methods to improve the reconstruction accuracy and promote the development of FRAME with deep sequences.

Funder

Scientific Instrument Developing Project of the Chinese Academy of Sciences

Science Foundation of the Chinese Academy of Sciences

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3