Affiliation:
1. The University of Arizona
2. Air Force Research Laboratory
Abstract
It is well known to system engineers that speckle imposes a limitation on active-tracking performance, but scaling laws that quantify this limitation do not currently exist in the peer-reviewed literature. Additionally, existing models lack validation through either simulation or experimentation. With these points in mind, this paper formulates closed-form expressions that accurately predict the noise-equivalent angle due to speckle. The analysis separately treats both well-resolved and unresolved cases for circular and square apertures. When compared with the numerical results from wave-optics simulations, the analytical results show excellent agreement to a track-error limitation of (1/3)λ/D, where λ/D is the aperture diffraction angle. As a result, this paper creates validated scaling laws for system engineers that need to account for active-tracking performance.
Subject
Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献