Surface weak scratch detection for optical elements based on a multimodal imaging system and a deep encoder–decoder network

Author:

Liang XiaoORCID,Sun Jingshuang,Wang Xuewei,Li Jie,Zhang Lianpeng,Guo Jingbo

Abstract

The detection of surface weak scratches is an intractable but vital task in optics-centered industries. However, the intrinsic characteristics of weak scratches, such as a narrow width, long span, and shallow depth, make it extremely difficult to effectively detect these scratches. In this paper, we tackle this issue from two perspectives. First, a multimodal microscopic imaging system is created by combining discrete multispectral illumination with linear polarization. Imaging experiments demonstrated that this system could highlight more scratch details, improve image clarity, and alleviate the image blur problem induced by wide spectrum scattered lights. Second, a scratch-oriented U-shaped deep encoder–decoder network equipped with optimized residual encoding modules, serial–parallel multiscale fusion modules, and triple-convolution decoding modules is proposed to segment the weak scratches from a raw image. The detection experiments demonstrate that our model can accurately segment the weak scratches on optical surfaces and achieve better detection performance using significantly fewer parameters compared to similar deep learning models. Meanwhile, experiments on the building crack dataset prove the excellent generalization capability.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Science and Technology Project of Hebei Education Department

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3