Affiliation:
1. University of Science and Technology of China
Abstract
During the past decade, spatial light interference microscopy (SLIM) has undergone rapid development, evidenced by its broadening applications in biology and medicine. However, the need for an expensive spatial light modulator (SLM) may limit its adoption, and the requirement for multiple images per plane limits its speed in volumetric imaging. Here we propose to address these issues by replacing the SLM with a mask fabricated from a low cost optical density (OD) filter, and recover high contrast images computationally rather than through phase-shifting. This is done using a specially constructed Wiener filter to recover the object scattering potential. A crucial part of the Wiener filter is estimating the arbitrary phase introduced by the OD filter. Our results demonstrate that not only were we able to estimate the OD filter’s phase modulation in situ, but also the contrast of the reconstructed images is greatly improved. Comparisons with other related methods are also performed, with the conclusion that the combination of an inexpensive OD mask and modified Wiener filtering leads to results that are closest to the traditional SLIM setup. Thus, we have demonstrated the feasibility of a low cost, high speed SLIM system utilizing computational phase reconstruction, paving the way for wider adoption of high resolution phase microscopy.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
University of Science and Technology of China
Subject
Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials