Image reconstruction for low cost spatial light interference microscopy with fixed and arbitrary phase modulation

Author:

Pan Yang,Smith Zachary J.1ORCID,Chu Kaiqin1

Affiliation:

1. University of Science and Technology of China

Abstract

During the past decade, spatial light interference microscopy (SLIM) has undergone rapid development, evidenced by its broadening applications in biology and medicine. However, the need for an expensive spatial light modulator (SLM) may limit its adoption, and the requirement for multiple images per plane limits its speed in volumetric imaging. Here we propose to address these issues by replacing the SLM with a mask fabricated from a low cost optical density (OD) filter, and recover high contrast images computationally rather than through phase-shifting. This is done using a specially constructed Wiener filter to recover the object scattering potential. A crucial part of the Wiener filter is estimating the arbitrary phase introduced by the OD filter. Our results demonstrate that not only were we able to estimate the OD filter’s phase modulation in situ, but also the contrast of the reconstructed images is greatly improved. Comparisons with other related methods are also performed, with the conclusion that the combination of an inexpensive OD mask and modified Wiener filtering leads to results that are closest to the traditional SLIM setup. Thus, we have demonstrated the feasibility of a low cost, high speed SLIM system utilizing computational phase reconstruction, paving the way for wider adoption of high resolution phase microscopy.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

University of Science and Technology of China

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3