Affiliation:
1. School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University
Abstract
Active devices have drawn considerable attention owing to their powerful capabilities to manipulate electromagnetic waves. Fast and periodic modulation of material properties is one of the key obstacles to the practical implementation of active metamaterials and metasurfaces. In this study, to circumvent this limitation, we employ a cascaded phase-matching mechanism to amplify signals through spatiotemporal modulation of permittivity. Our results show that the energy of the amplified fundamental mode can be efficiently transferred to that of the high harmonic components if the spatiotemporal modulation travels at the same speed as the signals. This outstanding benefit enables a low-frequency pump to excite parametric amplification. The realization of cascaded parametric amplification is demonstrated by finite-difference time-domain (FDTD) simulations and analytical calculations based on the Bloch–Floquet theory. We find that the same lasing state can always be excited by an incidence at different harmonic frequencies. The spectral and temporal responses of the space-time modulated slab strongly depend on the modulation length, modulation strength, and modulation velocity. Furthermore, the cascaded parametric oscillators composed of a cavity formed by photonic crystals are presented. The lasing threshold is significantly reduced by the cavity resonance. Finally, the excitation of cascaded parametric amplification relying on the Si-waveguide platform is demonstrated. We believed that the proposed mechanism provides a promising opportunity for the practical implementation of intense amplification and coherent radiation based on active metamaterials.
Funder
Agency for Science, Technology and Research
Singapore Ministry of Education
National Research Foundation Singapore Competitive Research Program
National Natural Science Foundation of China
Priority Academic Program Development (PAPD) of the Jiangsu Higher Education Institution
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献