Research on the computational method of creeping waves diffraction of arbitrary complex target based on the planar mesh model

Author:

Huang QiORCID,He Siyuan,Zhang Yunhua,Zhu Guoqiang,Chen Haitao1

Affiliation:

1. China Shipbuilding Industry Corporation 722nd Research Institute

Abstract

For a long time, due to the difficulty of obtaining accurate propagation trajectories, the research on creeping waves is limited to canonical geometries or simple targets, which leads to the situation that it is relatively mature in theoretical research on creeping waves, while the practical application scope of creeping waves for complex targets is narrow. In this paper, a thorough electromagnetic computation method for creeping waves on complex planar mesh model is systematically proposed. This approach broadens the field of creeping waves applications due to the generality of planar mesh models in electromagnetic engineering. The contents consist of the tracing of creeping waves, the calculation of the diffraction field, and the coupling effect with other scattering mechanisms. Aiming at the trajectory of creeping waves, we propose a set of tracing algorithms that enable rapid, real-time tracing based on analytical geometry and related computer graphics algorithms. Utilizing information such as vertices, triangles, and topological relations in the mesh model, one can recover the mathematical properties of the surfaces of the model and then, the corresponding parameters can be obtained. Therefore, the uniform geometrical theory of diffraction (UTD) can be used to accurately calculate the diffraction field. Moreover, for complex targets, the multiple coupling effect caused by creeping waves is the main source of radar echoes in many cases, which is not unimportant. Hence based on the electromagnetic accurate modeling, the coupling mechanism of creeping waves and various scattering mechanisms are studied. The research content is expected to have high application values in target recognition and characteristics.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the Coupling Mechanism of Creeping Waves Based on the Complex Planar Mesh Model;2023 XXXVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS);2023-08-19

2. Characteristic Analysis of Coupled Scattering Mechanism of Creeping Waves in Complex Targets;2023 International Applied Computational Electromagnetics Society Symposium (ACES-China);2023-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3