S-type fiber surface plasmon resonance strain sensor

Author:

Wei Yong,Shi Chen,Zhao Xiaoling,Liu Chunlan,Li Lingling,Wang Rui,Liu Chunbiao,Zhu Dong,Zhang Yu1ORCID,Liu Zhihai1

Affiliation:

1. Harbin Engineering University

Abstract

The fiber surface plasmon resonance (SPR) sensor is widely used in high-sensitivity refractive index detection, and there are few reports on SPR sensors used for strain measurement. In this paper, we propose and demonstrate an S-type fiber strain sensor based on SPR. The simulation and testing results indicate that the smaller the vertical axis offset of S-type fiber is, the larger the incidence angle of SPR is, and the closer the working band of SPR is to the shorter wavelength direction. By electrofusion, we fabricated an S-type structure on the single-mode fiber, and by the S-type structure, the high-order cladding mode was excited. A 50 nm gold film was coated on the surface of the fiber cladding behind the S-type structure. The evanescent field of the cladding mode contacted the gold film to produce SPR, and the strain can change the vertical axis offset of the S-type fiber and further change the incidence angle of SPR; hence an S-type fiber strain sensor based on SPR was realized. When the refractive index of the ambient medium is 1.345 RIU, the vertical axis offset and length of the S-shaped structure are 87 and 501 µm, respectively, the resonance wavelength of the fiber SPR strain sensor changes from 648.06 to 631.77 nm with a strain detection range of 0 1200 µ ε , and its sensitivity is 14.38 p m / µ ε . The proposed sensor provides a new solution for the strain measurement of the fiber SPR sensor, which is expected to be used in the fields of engineering, health monitoring, and early warning.

Funder

Fundamental Research Funds for Chongqing Three Gorges University of China

Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area

Science and Technology Project Affiliated to the Education Department of Chongqing Municipality

Natural Science Foundation of Chongqing

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3