Fast oscillations of orbital angular momentum and Shannon entropy caused by radial numbers of structured vortex beams

Author:

Volyar A.1,Abramochkin E.2ORCID,Akimova Ya.1ORCID,Bretsko M.1ORCID,Egorov Yu.1ORCID

Affiliation:

1. V.I. Vernadsky Crimean Federal University

2. Lebedev Physical Institute

Abstract

We address theoretical and experimental considerations of two-parameter excitation of each Hermite–Gaussian (HG) mode in composition of a structured Laguerre–Gaussian (sLG) beam. The complex amplitude of the sLG beam is shaped in such a way that the radial and azimuthal numbers of eigenmodes are entangled with each other. As a result, variations in the amplitude and phase parameters of mode excitation, although dramatically changing the intensity and phase patterns, do not change the structural stability of the beam. We reveal that the radial number of the sLG beam can cause fast oscillations of the orbital angular momentum and Shannon entropy, dramatically increasing the uncertainty of detecting the beam in some particular state. We found that despite the fast oscillations, the sLG beam has an invariant in the form of a module of the total topological charge (TC), with the exception of narrow intervals of the phase parameter, where the measurement error does not allow us to accurately measure the sign of the TC. The difference between the interpretation of informational entropy as a measure of uncertainty and a measure of information capacity is considered on the example of the measurement of Shannon entropy in the bases of LG and HG modes.

Funder

The State Council of the Republic of Crimea

Russian Foundation for Basic Research

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3