Abstract
Brillouin dynamic gratings (BDG) can measure the distributed birefringence of polarization-maintaining fibers (PMF), however, its sensing range is limited by both stimulated Brillouin scattering depletion and fiber losses in PMF, which are significantly higher than those in standard single-mode fibers. In this work, we theoretically and experimentally verify that BDG can be sustained over ultra-long distances when assisted by distributed Brillouin amplification, significantly extending the distributed birefringence measurement distance. Using an optical frequency comb pumped by a narrow linewidth laser to both generate and interrogate the amplified BDG, a birefringence measurement accuracy of 7.5 × 10−9 was achieved over 7 km sensing length, more than double the longest range reported. This opens a new opportunity to investigate small birefringence changes due to nonlinear optics effects and monitoring fiber network security from eavesdropping.
Funder
Canada Research Chairs
Natural Sciences and Engineering Research Council of Canada
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献