Abstract
For a partially coherent Gaussian optical wave, field correlations in turbulent tissues are examined. Changes in the field correlations are evaluated when the degree of source coherence, diagonal length from the receiver point, transverse receiver coordinate, tissue type, tissue length, source size, characteristic length of heterogeneity, strength coefficient of the refractive-index fluctuations, fractal dimension, and the small length-scale factor of the turbulent tissue vary. Investigated turbulent tissue types are liver parenchyma (mouse), upper dermis (human), intestinal epithelium (mouse), and deep dermis (mouse). For all the examined tissue types, field correlations are found to increase as the degree of source coherence, fractal dimension, and small length-scale factor increase and as the diagonal length from the receiver point, transverse receiver coordinate, tissue length, characteristic length of heterogeneity, and strength coefficient of the refractive-index fluctuations decrease. For the coherent source, an increase in the source size will increase the field correlations; however, for the partially coherent source, this trend is reversed.
Subject
Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献