Highly efficient method for cutting position selection of an x-ray mono-capillary lens based on an improved SCA-CSA algorithm

Author:

Huang YiORCID,Zhang ZhaofeiORCID,Deng Chuanlu,Chen Zhenyi,Yang Hai,Hu Chengyong,Zhang XiaobeiORCID,Wang Tingyun

Abstract

In order to efficiently select the optimal cutting position of x-ray mono-capillary lenses, an improved sine cosine algorithm-crow search algorithm (SCA-CSA) algorithm is proposed, which combines the sine cosine algorithm with the crow search algorithm, with further enhancements. The fabricated capillary profile is measured using an optical profiler; then the surface figure error for interest regions of the mono-capillary can be evaluated using the improved SCA-CSA algorithm. The experimental results indicate that the surface figure error in the final capillary cut region is about 0.138 µm, and the runtime is 2.284 s. When compared with the traditional metaheuristic algorithm, the particle swarm optimization algorithm, the improved SCA-CSA algorithm, enhances the surface figure error metric by two orders of magnitude. Furthermore, the standard deviation index of the surface figure error metric for 30 runs also improves by more than 10 orders of magnitude, demonstrating the superior performance and robustness of the algorithm. The proposed method provides significant support for the development of precise cuttings of mono-capillaries.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

111 Project

Advanced Optical Waveguide Intelligent Manufacturing and Testing Professional Technical Service Platform of Shanghai

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3