Affiliation:
1. Harbin Institute of Technology
2. Nanchang University
3. Taiyuan University of Technology
Abstract
We first present the all-optical realization of a scalable super-resolved magnetic vortex core (MVC) by tightly focusing two modulated counter-propagating radially polarized doughnut Gaussian beams based on the vectoial diffraction theory and the inverse Faraday effect. It is shown that by imposing spiral phase plates (SPPs) on the incident vectorial beams, single three-dimensional (3D) super-resolved (λ3/22) MVC can be achieved in the 4π focusing setup, which is radically different from that produced with a single lens focusing. Furthermore, the light-induced MVC texture turns to be richer and more complex when the radially polarized beams are tailored by the SPPs and judiciously designed multi-ring filters all together. In this case, we are able to garner not only transverse super-resolved (0.447λ) MVC needle with an uniformly extended area (40λ) in the single lens focusing system, but also the multiple uniform 3D super-resolved (λ3/24) chain-like MVC cells in the 4π focusing system, thus giving rise to the tunable and scalable super-resolved MVC extension. The related physical mechanisms to trigger such peculiar magnetization polarization topologies are unraveled as well. These resultant achievements would pave the way for the integrated transfer and storage of optomagnetic information, atomic trapping, and beyond.
Funder
National Natural Science Foundation of China
Key Research and Development (R&D) Projects of Shanxi Province
Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi
the Natural Sciences Foundation in Shanxi Province
Science and Technology Foundation of Guizhou Province
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献