Non-contact optical spectroscopy for tumor-sensitive diffuse reflectance and fluorescence measurements on murine subcutaneous tissue models: Monte Carlo modeling and experimental validations

Author:

Hasan Md Zahid,Saha Pranto Soumik,Korfhage Madison O.,Zhu Caigang

Abstract

Fiber-optic probes are commonly used in biomedical optical spectroscopy platforms for light delivery and collection. At the same time, it was reported that the inconsistent probe-sample contact could induce significant distortions in measured optical signals, which consequently cause large analysis errors. To address this challenge, non-contact optical spectroscopy has been explored for tissue characterizations. However, existing non-contact optical spectroscopy platforms primarily focused on diffuse reflectance measurements and may still use a fiber probe in which the probe was imaged onto the tissue surface using a lens, which serves as a non-contact probe for the measurements. Here, we report a fiber-probe-free, dark-field-based, non-contact optical spectroscopy for both diffuse reflectance and fluorescence measurements on turbid medium and tissues. To optimize the system design, we developed a novel Monte Carlo method to simulate such a non-contact setup for both diffuse reflectance and fluorescence measurements on murine subcutaneous tissue models with a spherical tumor-like target. We performed Monte Carlo simulations to identify the most tumor-sensitive configurations, from which we found that both the depth of the light focal point in tissue and the lens numerical aperture would dramatically affect the system’s tumor detection sensitivity. We then conducted tissue-mimicking phantom studies to solidify these findings. Our reported Monte Carlo technique can be a useful computational tool for designing non-contact optical spectroscopy systems. Our non-contact optical setup and experimental findings will potentially offer a new approach for sensitive optical monitoring of tumor physiology in biological models using a non-contact optical spectroscopy platform to advance cancer research.

Funder

American Cancer Society

National Institute of General Medical Sciences

National Institute of Dental and Craniofacial Research

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3