Laser damage properties of LiB3O5 crystal surface under UV laser irradiation

Author:

Liu Hongjie1,Wang Fang1,Sun Laixi1ORCID,Zheng Tianran1,Wang Fengrui1

Affiliation:

1. China Academy of Engineering Physics

Abstract

LiB3O5 (LBO) crystal has a very high bulk laser damage threshold. Laser damage often occurs on the surfaces with a large number of processing defects during application. In this paper, the surface laser damage threshold, damage growth threshold, and damage growth curve of LBO crystal and fused silica under the same processing process have been comparatively studied by using a 355 nm pulsed laser. The surface laser damage performance of LBO crystal has been comprehensive evaluated. The results show that the laser damage threshold and damage growth threshold of LBO are about twice that of fused silica, and the damage growth coefficient is about 0.7 times that of fused silica. The detection and analysis of impurity defects and photothermal weak absorption defects show that the subsurface defects of LBO crystal are less than that of fused silica. Laser damage morphologies show that the damage process is related to strongly bonded chemical structure and anisotropic physical characteristics of LBO crystal. These characteristics together determine the high threshold damage performance of LBO crystal. The results of this study are of great guidance for the application of LBO crystal in high-power laser systems.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3