All-optical frequency-dependent magnetic switching in metal-insulator-metal stub structures

Author:

Pae Ji-Song1,Im Song-Jin1ORCID,Han Yong-Ha1

Affiliation:

1. Kim Il Sung University

Abstract

Many attempts to switch magnetization with optical pulses were based on free-space coupling schemes of circularly polarized light pulses, so-called all-optical helicity-dependent magnetic switching; however, waveguide coupling schemes are promising for on-chip all-optical magnetic switching. Metal-insulator-metal (MIM) stub structures provide a promising platform for highly integrated photonic circuits, thanks to their compact size, on-chip compatibility, and ease of fabrication. We found clockwise and counterclockwise ring-like modes in the MIM stub structure, which can act as effective magnetic fields with two opposite directions due to the inverse Faraday effect. Effective magnetic field spectra inside the MIM stub have dual resonant peaks at which the effective magnetic field intensity reaches its extreme values with opposite signs, corresponding to binary magnetic states. Switching between the binary magnetic states can be achieved by altering the optical pump frequency. The all-optical frequency-dependent magnetic switching in the MIM stub may provide a chip-compatible and ultracompact tool for ultrafast switching of magnetic order.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3